Synchrony affects Taylor's law in theory and data.

نویسندگان

  • Daniel C Reuman
  • Lei Zhao
  • Lawrence W Sheppard
  • Philip C Reid
  • Joel E Cohen
چکیده

Taylor's law (TL) is a widely observed empirical pattern that relates the variances to the means of groups of nonnegative measurements via an approximate power law: variance g ≈ a [Formula: see text] mean gb , where g indexes the group of measurements. When each group of measurements is distributed in space, the exponent b of this power law is conjectured to reflect aggregation in the spatial distribution. TL has had practical application in many areas since its initial demonstrations for the population density of spatially distributed species in population ecology. Another widely observed aspect of populations is spatial synchrony, which is the tendency for time series of population densities measured in different locations to be correlated through time. Recent studies showed that patterns of population synchrony are changing, possibly as a consequence of climate change. We use mathematical, numerical, and empirical approaches to show that synchrony affects the validity and parameters of TL. Greater synchrony typically decreases the exponent b of TL. Synchrony influenced TL in essentially all of our analytic, numerical, randomization-based, and empirical examples. Given the near ubiquity of synchrony in nature, it seems likely that synchrony influences the exponent of TL widely in ecologically and economically important systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taylor's power law: before and after 50 years of scientific scrutiny

Taylor's power law is one of the mostly widely known empirical patterns in ecology discovered in the 20th century. It states that the variance of species population density scales as a power-law function of the mean population density. Taylor's power law was named after the British ecologist Lionel Roy Taylor. During the past half-century, Taylor's power law was confirmed for thousands of biolo...

متن کامل

Taylor's Law holds in experimental bacterial populations but competition does not influence the slope.

Populations vary in time and in space, and temporal variation may differ from spatial variation. Yet, in the past half century, field data have confirmed both the temporal and spatial forms of Taylor's power Law, a linear relationship between log(variance) and log(mean) of population size. Recent theory predicted that competitive species interactions should reduce the slope of the temporal vers...

متن کامل

Population dynamics, synchrony, and environmental quality of Hokkaido voles lead to temporal and spatial Taylor's laws.

Taylor's law (TL) asserts that the variance in a species' population density is a power-law function of its mean population density: log(variance) = a + b × log(mean). TL is widely verified. We show here that empirical time series of density of the Hokkaido gray-sided vole, Myodes rufocanus, sampled 1962-1992 at 85 locations, satisfied temporal and spatial forms of TL. The slopes (b ± standard ...

متن کامل

Temporal fluctuation scaling in populations and communities.

Taylor's law, one of the most widely accepted generalizations in ecology, states that the variance of a population abundance time series scales as a power law of its mean. Here we reexamine this law and the empirical evidence presented in support of it. Specifically, we show that the exponent generally depends on the length of the time series, and its value reflects the combined effect of many ...

متن کامل

Origins of Taylor's power law for fluctuation scaling in complex systems.

Taylor's fluctuation scaling (FS) has been observed in many natural and man-made systems revealing an amazing universality of the law. Here, we give a reliable explanation for the origins and abundance of Taylor's FS in different complex systems. The universality of our approach is validated against real world data ranging from bird and insect populations through human chromosomes and traffic i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 26  شماره 

صفحات  -

تاریخ انتشار 2017